THE NEUROPROTECTIVE EFFECT OF NON-CODING RNAS IN ISCHEMIA AND REPERFUSION OF THE BRAIN MAY BE MEDIATED BY A DECREASE IN THE LEVEL OF ATG PROTEINS
- Авторлар: Zakharova I.O.1, Bayunova L.V.1, Avrova N.F.1
-
Мекемелер:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Шығарылым: Том 61, № 4 (2025)
- Беттер: 226-240
- Бөлім: REVIEWS
- URL: https://stomuniver.ru/0044-4529/article/view/697054
- DOI: https://doi.org/10.7868/S3034552925040023
- ID: 697054
Дәйексөз келтіру
Аннотация
In recent years, it has become clear that non-coding RNAs play an important role in regulating the development, metabolism and function of various organs. They play a pronounced regulatory role in various diseases and pathological conditions, including cerebral ischemia and reperfusion. Regulatory non-coding RNAs are mainly represented by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs). Excessive activation of autophagy during severe cerebral ischemia and subsequent reperfusion leads to autophagic neuronal death, which, with apoptotic neuronal death, is known to be one of the main causes of brain injury in this disease. This review shows that regulatory noncoding RNAs can exert a neuroprotective effect by reducing the level of autophagy-related proteins (ATG proteins), which leads to inhibition and normalization of autophagy during brain ischemia and reperfusion. Thus, knockdown of one of the lncRNAs can lead to a significant increase in the level of microRNAs, which causes a subsequent decrease in the levels of messenger RNA (mRNA) of one of the ATG proteins and, as a consequence, a decrease in the level of the ATG protein itself. This results in inhibition of autophagy and reduction in brain damage from ischemia and reperfusion injury. Changes in miRNA and target protein mRNA levels occur due to the existence of complementary nucleotide sequences in lncRNA and miRNA, as well as in miRNA and mRNA of different ATG proteins, respectively. Thus, the final decrease in the level of ATG protein and inhibition of autophagy determine the protective effect of knockout of a number of lncRNAs (or circRNAs) during brain ischemia and reperfusion. Further study of the regulatory role of noncoding RNAs may help identify ways to counteract the brain-damaging effects of overactivation of autophagy and other abnormalities during brain ischemia and reperfusion.
Авторлар туралы
I. Zakharova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
L. Bayunova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
N. Avrova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: avrova@iephb.ru
St. Petersburg, Russia
Әдебиет тізімі
- GBD 2021 Diseases and Injuries Collaborators(2021) Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403: 2133–2161. https://doi.org/10.1016/S0140-6736(24)00757-8
- Pu L, Wang L, Zhang R, Zhao T, Jiang Y, Han L(2023) Projected Global Trends in Ischemic Stroke Incidence, Deaths and Disability-Adjusted Life Years From 2020 to 2030. Stroke 54: 1330–1339. https://doi.org/10.1161/STROKEAHA.122.040073
- Tanaka Y, Nakagomi N, Doe N, Nakano-Doi A, Sawano T, Takagi T, Matsuyama T, Yoshimura S, Nakagomi T(2020) Early Reperfusion Following Ischemic Stroke Provides Beneficial Effects, Even After Lethal Ischemia with Mature Neural Cell Death. Cells 9: 1374. https://doi.org/10.3390/cells9061374
- Jurcau A, Ardelean AI(2022) Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 10: 574. https://doi.org/10.3390/biomedicines10030574
- Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG(2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30: 1306–1317. https://doi.org/10.1038/jcbfm.2010.14
- Xie L, Li W, Hersh J, Liu R, Yang SH(2019) Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab 39: 2268–2276. https://doi.org/10.1177/0271678X18792372
- Goodman GW, Do TH, Tan C, Ritzel RM(2023) Drivers of Chronic Pathology Following Ischemic Stroke: A Descriptive Review. Cell Mol Neurobiol 44: 7. https://doi.org/10.1007/s10571-023-01437-2
- Chu CT(2025) The Role of Autophagy in Excitotoxicity, Synaptic Mitochondrial Stress and Neurodegeneration. Autophagy Rep 4: 2464376. https://doi.org/10.1080/27694127.2025.2464376
- Zheng Y, Huang Z, Zhao Y, Huang L, Wang J, Li H, Chen X, Wan J, Xie J(2024) Mechanism of ameliorating cerebral ischemia/reperfusion injury by antioxidant inhibition of autophagy based on network pharmacology and experimental verification. Aging 16: 7474–7486. https://doi.org/10.18632/aging.205773
- Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L(2022) The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 15: 14. https://doi.org/10.1186/s13041-022-00899-7
- Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W (2025) Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 30: 42. https://doi.org/10.1186/s11658-025-00713-x
- Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, Wu Q, Zhang X, Luo C, Zhou S, Sirianni AC, Sarkar S, Kristal BS, Friedlander RM, Wang X(2014) N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci 34: 2967–2978. https://doi.org/10.1523/JNEUROSCI.1948-13.2014
- Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, Wang T (2016) Protection against perimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy. PloS One 11: e0144219. https://doi.org/10.1371/journal.pone.0144219
- Li Y, Gao Y, Yu G, Ye Y, Zhu H, Wang J, Li Y, Chen L, Gu L(2025) G6PD protects against cerebral ischemia-reperfusion injury by inhibiting excessive mitophagy. Life Sci 362: 123367. https://doi.org/10.1016/j.lfs.2024.123367
- Wang M, Li YJ, Ding Y, Zhang HN, Sun T, Zhang K, Yang L, Guo YY, Liu SB, Zhao MG, Wu YM(2016) Silibinin Prevents Autophagic Cell Death upon Oxidative Stress in Cortical Neurons and Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 53: 932–943. https://doi.org/10.1007/s12035-014-9062-5
- He C, Xu Y, Sun J, Li L, Zhang J H, Wang Y(2023) Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 38: 234–257. https://doi.org/10.1089/ars.2021.0094
- Zhang H, Wang X, Chen W, Yang Y, Wang Y, Wan H, Zhu Z(2023) Danhong injection alleviates cerebral ischemia-reperfusion injury by inhibiting autophagy through miRNA-132-3p/ATG12 signal axis. J Ethnopharmacol 300: 115724. https://doi.org/10.1016/j.jep.2022.115724
- Liu K, Yao X, Gao J, Wang J, Qi J(2024) A study on the mechanism of Beclin-1 m6A modification mediated by catalpol in protection against neuronal injury and autophagy following cerebral ischemia. Mol Med 30: 65. https://doi.org/10.1186/s10020-024-00818-7
- Ren H, Yuan Q, Lu J, Xi S, Liu Y, Yang G, Xie Z, Wang B, Ma L, Fu X, Liu J, Zhang Y(2024) Tetrahydropiperine, a natural alkaloid with neuroprotective effects in ischemic stroke. J Chem Neuroanat 136: 102397. https://doi.org/10.1016/j.jchemneu.2024.102397
- Zakharova IO, Bayunova LV, Avrova DK, Tretyakova AD, Shpakov AO, Avrova NF(2024) The Autophagic and Apoptotic Death of Forebrain Neurons of Rats with Global Brain Ischemia Is Diminished by the Intranasal Administration of Insulin: Possible Mechanism of Its Action. Curr Issues Mol Biol 46: 6580–6599. https://doi.org/10.3390/cimb46070392
- Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD(2014) Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Transl Stroke Med 6: 8. https://doi,org/10.1186/2040-7378-6-8
- Liu X, Tian F, Wang S, Wang F, Xiong L(2018) Astrocyte autophagy flux protects neurons against oxygen-glucose deprivation and ischemic/reperfusion injury. Rejuvenation Res. 215: 405–415. https://doi.org/10.1089/rej.2017.1999
- Carloni S, Balduini W(2020) Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 324: 113117. http://doi.org/10.1016/j.expneurol.2019.11
- Lu H, Wang Y, Fan H Wang Y, Fan S, Hu S, Shen H, Li H, Xue Q, Ni J, Fang Q, Chen G(2023) GluA1 Degradation by Autophagy Contributes to Circadian Rhythm Effects on Cerebral Ischemia Injury. J Neurosci 43: 2381–2397. https://doi.org/10.1523/JNEUROSCI.1914-22.2023
- Hou D, Hu Y, Yun T, Yu D, Yang G(2025) USP7 promotes PINK1/Parkin-dependent mitophagy to ameliorate cerebral ischemia-reperfusion injury by deubiquitinating and stabilizing SIRT1. Brain Res 1858: 149638. https://doi.org/10.1016/j.brainres.2025.149638
- Taft RJ, Pheasant M, Mattick JS(2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29(3): 288–299. https://doi.org/10.1002/bies.20544
- Wang KC, Chang HY(2011) Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6): 904–914. https://doi.org/10.1016/j.molcel.2011.08.018
- Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G(2015) Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron 88(5): 861–877. https://doi.org/10.1016/j.neuron.2015.09.045
- Subhramanyam CS, Hu Q(2017) Non-Coding RNA in Brain Development and Disorder. Curr Med Chem 24(18): 1983–1997. https://doi.org/10.2174/092986
- Diedrich S(2010) Nichtcodierende RNA in malignen Tumoren. Eine neue Welt von Tumor-Biomarkern und Zielstrukturen in Krebszellen [Non-coding RNA in malignant tumors.A new world of tumor biomarkers and targetstructures in cancer cells]. Der Pathologe 31 (suppl 2): 258–262. https://doi.org/10.1007/s00292-010-1336-8
- Murata A, Nakamori M, Nakatani K(2019) Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods (San Diego, Calif) 167: 78–91. https://doi.org/10.1016/j.ymeth.2019.05.006
- Gong C, Zhou X, Lai S, Wang L, Liu J(2020) Long noncoding RNA/circular RNA-miRNA-mRNA axes in ischemia-reperfusion injury. Biomed Res Int 2020: 8838524. http://doi.org/10.1155/2020/8838524
- Wu YY, Kuo HC(2020) Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci 27: 49. https://doi.org/10.1186/s12929-020-00636-z
- Yang Q, Li F, He AT, Yang BB(2021) Circular RNAs: expression, localization, and therapeutic potentials. Mol Ther 29: 1683–1702. https://doi.org/10.1016/j.ymthe.2021.01.018
- Wolska M, Jarosz-Popek J, Junger E, Wicik Z, Porshoor T, Sharif L, Czajka P, Postula M, Mirowska-Guzel D, Czlonkowska A, Eyileten C(2021) Long non-coding RNAs as promising therapeutic approach in ischemic stroke: a comprehensive review. Mol Neurobiol 58: 1664–1682. https://doi.org/10.1007/s12035-020-02206-8
- Kyzar EJ, Bohnsack JP, Pandey SC(2022) Current and future perspectives of noncoding RNAs in brain function and neuro-psychiatric disease. Biol Psychiatry 91: 183–193. https://doi.org/10.1016/j.biopsych.2021.08.013
- Olufunmilayo EO, Holsinger RMD(2023) Roles of non-coding RNA in Alzheimer's disease pathophysiology. Int J Mol Sci 24: 12498. https://doi.org/10.3390/ijms241512498
- Zong Y, Dai Y, Yan J, Yu B, Wang D, Mao S(2024) The roles of circular RNAs in nerve injury and repair. Front Mol Neurosci 17: 1419520. https://doi.org/10.3389/fnmol.2024.1419520
- Garimella KV, England E, Weisburd B, Aguet F, Bacino C, Murdock DR, Dai H, Rosenfeld JA, Emrick LT, Ketkar S, Sarusi Yet al.(2024) Neurodevelopmental disorder caused by deletion of CHASERR, a lncRNA gene. N Engl J Med 391: 1511–1518. https://doi.org/10.1056/NEJMoa2400718
- Karami Y, Ehtiati S, Ghasemi H, Rafiee M, Zamani Sani M, Hosseini SE, Moradi Kazerouni H, Movahedpour A, Aiiashi S, Khatami SH(2025) Non-coding RNA biosensors for early detection of brain cancer. Clin Chim Acta 566: 120041. https://doi.org/10.1016/j.cca.2024.120041
- Wang Z, Jiao P(2025) Roles of non-coding RNAs and exosomal non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs, in pathogenic mechanisms behind chronic pain: A review. Int J Biol Macromol 2025: 141945. Advance online publication. https://doi.org/10.1016/j.ijbiomac.2025.141945
- Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J et al.(2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: 1775–1789. https://doi.org/10.1101/gr.132159.111
- Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J(2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20: 675–691. https://doi.org/10.1038/s41576-019-0158-7
- Han Z, Chen H, Guo Z, Shen J, Luo W, Xie F, Wan Y, Wang S, Li J, He J(2022) Circular RNAs and Their Role in Exosomes. Front Oncol 12: 848341. https://doi.org/10.3389/fonc.2022.848341
- Liu S, Guo XY, Shang QJ, Gao P(2023) The biogenesis, biological functions and modifications of circular RNAs. Exp Mol Pathol 131: 104861. https://doi.org/10.1015/j.yexmp.2023.104861
- Zhao X, Zhong, Y, Wang X, Shen J, An W(2022) Advances in circular RNA and its applications. Int J Med Sci 19: 975–985. https://doi.org/10.7150/ijms.71840
- Chuang TJ, Chiang TW, Chen CY(2023) Assessing the impacts of various factors on circular RNA reliability. Life Sci Alliance 6: e202201793. https://doi.org/10.26508/lsa.202201793
- Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD(2022) MiRNA involvement in cerebral ischemia-reperfusion injury. Front Neurosci 16: 901360. https://doi.org/10.3389/fnins.2022.901360
- Huang A, Zheng H, Wu Z, Chen M, Huang Y(2020) Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10: 3503–3517. https://doi.org/10.7150/thno.42174
- Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B(2022) New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (London, England) 42: 117–140. https://doi.org/10.1002/cac2.12254
- Ferrè F, Colantoni A, Helmer-Citterich M(2016) Revealing protein-lncRNA interaction. Brief Bioinform 17: 106–116. https://doi.org/10.1093/bib/bbv031
- Das A, Sinha T, Shyamal S, Panda AC(2021) Emerging Role of Circular RNA-Protein Interactions. Noncoding RNA 7(3): 48. https://doi.org/10.3390/ncrna7030048
- Duan X, Han L, Peng D, Peng C, Xiao L, Bao Q, Peng H (2019) Bioinformatics analysis of a long non-coding RNA and mRNA regulation network in rats with middle cerebral artery occlusion based on RNA sequencing. Mol Med Rep 20: 417–432. https://doi.org/10.3892/mmr.2019.10300
- Liu C, Yang J, Zhang C, Liu M, Geng X, Ji X, Du H, Zhao H (2018) Analysis of long non-coding RNA expression profiles following focal cerebral ischemia in mice. Neurosci Lett 665: 123–129. https://doi.org/10.1016/j.neulet.2017.11.058
- Duan X, Li L, Gan J, Peng C, Wang X, Chen W, Peng D(2019) Identification and functional analysis of circular RNAs induced in rats by middle cerebral artery occlusion. Gene 701: 139–145. https://doi.org/10.1016/j.gene.2019.03.053
- Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H(2017) Screening circular RNA expression patterns following focal cerebral is-chemia in mice. Oncotarget 8: 86535–86547. https://doi.org/10.18632/oncotarget.21238
- Dharap A, Bowen K, Place R, Li LC, Vemuganti R(2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29: 675–687. https://doi.org/10.1038/jcbfm.2008.157
- Duan X, Gan J, Peng DY, Bao Q, Xiao L, Wei L, Wu J(2019) Identification and functional analysis of microRNAs in rats following focal cerebral ischemia injury. Mol Med Rep 19: 4175–4184. https://doi.org/10.3892/mmr.2019.10073
- Walczak M, Martens S(2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9(3): 424–425. https://doi.org/10.4161/auto.22931
- Fujioka Y, Noda NN(2025) Mechanisms of autophagosomeformation. Proc Jpn Acad Ser B Phys Bio. Sci 101(1): 32-40. https://doi.org/10.2183/pjab.101.005
- Hu X, Ma F, Cheng Z, Zeng S, Shen R, Li X, Hu J, Jin Z, Cheng J(2022) LncRNA PEG11as silencing sponges miR-874-3p to alleviate cerebral ischemia stroke via regulating autophagyin vivoandin vitro. Aging (Albany NY) 14(12): 5177–5194. https://doi.org/10.18632/aging.204140
- Yu S, Yu M, He X, Wen L, Bu Z, Feng J(2019) KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell 18(3): e12940. https://doi.org/10.1111/acel.12940
- Yu Y, Cai Y, Zhou H(2024) LncRNA SNHG15 regulates autophagy and prevents cerebral ischaemia-reperfusion injury through mediating miR-153-3p/ATG5 axis. J Cell Mol Med. 28(5): e17956. https://doi.org/10.1111/jcmm.17956
- Cao Y, Pan L, Zhang X, Guo W, Huang D(2020) LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab Brain Dis 35(8): 1361–1369. https://doi.org/10.1007/s11011-020-00607-1
- Sun B, Ou H, Ren F, Guan Y, Huan Y, Cai H(2021) Propofol Protects against Cerebral Ischemia/Reperfusion Injury by Down-Regulating Long Noncoding RNA SNHG14. ACS Chem Neurosci 12(16): 3002–3014. https://doi.org/10.1021/acschemneuro.1c00059
- Wei L, Peng Y, Yang XJ, Zhou P(2021) Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway. Kaohsiung J Med Sci 37(6): 468–478. https://doi.org/10.1002/kjm2.12362
- Wu Z, Tan J, Lin L, Zhang W, Yuan W(2022) Sevoflurane up-regulates miR-7a to protect against ischemic brain injury in rats by down-regulating ATG7 and reducing neuronal autophagy. Brain Res Bull 2022, 188, 214–222. https://doi.org/10.1016/j.brainresbull.2022.07.003
- Fan W, Rong J, Shi W, Liu W, Wang J, Tan J, Yu B, Tong J(2023) GATA6 inhibits neuronal autophagy and ferroptosis in cerebral ischemia-reperfusion injury through a miR-193b/ATG7 axis-dependent mechanism. Neurochem Res 48(8): 2552–2567. https://doi.org/10.1007/s11064-023-03918-8
- Jiang C, Liu H, Peng J, Hu X, Xia Y(2025) EIF4A3-Induced circ_0029941 Promotes Astrocyte Activation Through Enhancing Autophagy via miR-224-5p/NFAT5 Axis. Mol Neurobiol 62(7): 75–89. https://doi.org/10.1007/s12035-025-04817-5
Қосымша файлдар
