Braking and gyromagnetic radiation of an electron in an inhomogeneous electromagnetic wave in the presence of an external magnetic field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers the bremsstrahlung and gyromagnetic radiation of an electron in the field of an inhomogeneous electromagnetic wave in the presence of an external magnetic field. It is shown that when the external magnetic field is perpendicular to the electric field of an inhomogeneous electromagnetic wave, the power of gyromagnetic radiation always exceeds the braking power. It is established that in the case when the external magnetic field is parallel to the electric field of an inhomogeneous wave, there is a threshold field value at which the power of gyromagnetic radiation exceeds the power of bremsstrahlung. It is established that when an electron moves in an inhomogeneous electromagnetic wave, the effect of suppression of the carrier frequency in the electron radiation spectrum can be realized.

About the authors

V. B. Lapshin

Lomonosov Moscow State University; Moscow Institute of Physics and Technology (National Research University)

Email: lapshin-vb1@mail.ru
Leninskie Gory, 1, build. 2, Moscow, 119991; Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700

A. A. Skubachevskii

Moscow Institute of Physics and Technology (National Research University)

Email: lapshin-vb1@mail.ru
Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700

A. S. Bugaev

Moscow Institute of Physics and Technology (National Research University); Kotelnikov Institute of Radioengineering and Electronics of the RAS

Author for correspondence.
Email: lapshin-vb1@mail.ru
Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700; Mokhovaya Str., 11, build. 7, Moscow, 125009

References

  1. Гуревич А.В. // Успехи физ. наук. 2007. Т. 177. № 11. С. 1145.
  2. Bailey V.A. // Nature. 1937. V. 139. № 3524. P. 838.
  3. Благовещенская Н.Ф., Борисова Т.Д., Йоман Т.К. и др. // Изв. вузов. Сер. Радиофизика. 2010. Т. 53. № 9–10. С. 571.
  4. Благовещенская Н.Ф., Борисова Т.Д., Калишин А.С. и др. // Изв. вузов. Сер. Радиофизика. 2012. Т. 55. № 1–2. С. 141.
  5. Грач С.М. Взаимодействие мощных радиоволн с ионосферой. Ч. 1. Возбуждение плазменной турбулентности в верхней ионосфере: Учеб. Пособие. Нижний Новгород: Нижегородский госуниверситет, 2012.
  6. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1973.
  7. Джексон Дж. Классическая электродинамика. М.: Мир, 1962.
  8. Лапшин В.Б., Котонаева Н.Г., Перминова Е.С. // Электромагнитные волны и электронные системы. 2016. Т. 21. № 9. С. 43.
  9. Лапшин В.Б., Скубачевский А.А., Белинский А.В., Бугаев А.С. // Докл. РАН. 2019. Т. 488. № 6. С. 604.
  10. Фортов В.Е. Энциклопедия низкотемпературной плазмы. Вводный том I. М.: Наука, 2000.
  11. Болотовский Б.М., Серов А.В. // Успехи физ. наук. 2003. Т. 173. № 6. С. 667.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences