Влияние гидродинамических условий синтеза коллоидной системы альгинат натрия–папаин на сорбционные свойства биокомпозита
- Авторы: Кокшаров С.А.1, Лепилова О.В.1, Алеева С.В.1, Кричевский Г.Е.2, Фидоровская Ю.С.3, Олтаржевская Н.Д.3
-
Учреждения:
- Институт химии растворов им. Г.А. Крестова Российской академии наук
- ООО “НПО Текстильпрогресс Инженерной Академии”
- ООО “Колетекс”
- Выпуск: Том 85, № 4 (2023)
- Страницы: 511-525
- Раздел: Статьи
- Статья получена: 27.02.2025
- Статья опубликована: 01.07.2023
- URL: https://stomuniver.ru/0023-2912/article/view/671386
- DOI: https://doi.org/10.31857/S0023291223600244
- EDN: https://elibrary.ru/GMUQCT
- ID: 671386
Цитировать
Аннотация
Исследована специфика образования молекулярных ассоциатов при введении папаина в коллоидный раствор альгината натрия при ламинарном низкоскоростном, переходном и турбулентном режимах перемешивания, прослежена связь с изменением сорбционной емкости биополимерной композиции и кинетическими закономерностями межфазного переноса при сорбционном связывании альбумина – одного из белковых компонентов раневого экссудата, подлежащих ферментативному расщеплению. Состояние дисперсной фазы коллоидных растворов оценено методом динамического рассеяния света. Свойства формируемых биополимерных пленок изучены с применением методов электронной сканирующей микроскопии, низкотемпературной адсорбции азота и статической сорбции альбумина из растворов ограниченного объема. Данные сорбционных экспериментов проанализированы с использованием диффузионных моделей Бойда, Морриса–Вебера и гелевой диффузии, а также кинетических моделей псевдо-первого порядка Лагергрена и псевдо-второго порядка Хо и Маккея. Получены результаты для обоснования дозировки биополимерной матрицы на ранозаживляющей повязке и эффективного связывания некротических загрязнений раны в течение заданной продолжительности контаминации.
Об авторах
С. А. Кокшаров
Институт химии растворов им. Г.А. Крестова Российской академии наук
Email: svetlana19750710@gmail.com
Россия, 153045, Иваново,
ул. Академическая, 1
О. В. Лепилова
Институт химии растворов им. Г.А. Крестова Российской академии наук
Email: svetlana19750710@gmail.com
Россия, 153045, Иваново,
ул. Академическая, 1
С. В. Алеева
Институт химии растворов им. Г.А. Крестова Российской академии наук
Email: svetlana19750710@gmail.com
Россия, 153045, Иваново,
ул. Академическая, 1
Г. Е. Кричевский
ООО “НПО Текстильпрогресс Инженерной Академии”
Email: svetlana19750710@gmail.com
Россия, 115093, Москва, ул. Павловская, 21
Ю. С. Фидоровская
ООО “Колетекс”
Email: svetlana19750710@gmail.com
Россия, 115093, Москва, ул. Павловская, 21
Н. Д. Олтаржевская
ООО “Колетекс”
Автор, ответственный за переписку.
Email: svetlana19750710@gmail.com
Россия, 115093, Москва, ул. Павловская, 21
Список литературы
- Zhang H., Cheng J., Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine // Marine Drugs. 2021. V. 19. № 5. P. 264. https://doi.org/10.3390/md19050264
- Abourehab M.A., Rajendran R.R., Singh A., Pramanik S., Shrivastav P., Ansari M.J., Manne R., Amaral L.S., Deepak A. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art // Int. J. Mol. Sci. 2022. V. 23. № 16. P. 9035. https://doi.org/10.3390/ijms23169035
- Liu Z., Chen X., Huang Z., Wang H., Cao S., Liu C., Yan H., Lin Q. One-pot synthesis of amphiphilic biopolymers from oxidized alginate and self-assembly as a carrier for sustained release of hydrophobic drugs // Polymers. 2022. V. 14. № 4. P. 694. https://doi.org/10.3390/polym14040694
- Ilgin P., Ozay H., Ozay O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier // J. Polym. Res. 2020. V. 27. P. 251. https://doi.org/10.1007/s10965-020-02231-0
- Roquero D.M., Smutok O., Othman A., Melman A., Katz E. “Smart” delivery of monoclonal antibodies from a magnetic responsive microgel nanocomposite // ACS Appl. Bio Mater. 2021. V. 4. P. 8487–8497. https://doi.org/10.1021/acsabm.1c00994
- Roquero D.M., Katz E. “Smart” alginate hydrogels in biosensing, bioactuation and biocomputing: State-of-the-art and perspectives // Sensors and Actuators Reports. 2022. V. 4. P. 100095. https://doi.org/10.1016/j.snr.2022.100095
- Zhao Q., Li C., Shum H.C., Du X. Shape-adaptable biodevices for wearable and implantable applications // Lab Chip. 2020. V. 20. P. 4321–4341. https://doi.org/10.1039/d0lc00569j
- Biswas A., Bornhoeft L.R., Banerjee S., You Y.H., McShane J. Composite hydrogels containing bioactive microreactors for optical enzymatic lactate sensing // ACS Sens. 2017. V. 2. P. 1584–1588. https://doi.org/10.1021/acssensors.7b00648
- Roquero D.M., McCorduck B., Bollella P., Smutok O., Melman A., Katz E. Biomolecule release from alginate composite hydrogels triggered by logically processed signals // ChemPhysChem. 2021. V. 22. № 19. P. 1967–1977. https://doi.org/10.1002/cphc.202100458
- Poncelet D. Production of alginate beads by emulsification/internal gelation // Ann. N. Y. Acad. Sci. 2001. V. 944. P. 74–82. https://doi.org/10.1111/j.1749-6632.2001.tb03824.x
- Orue I.G., Vizcaíno E.S., Sanchez P., Gutierrez F.B., Anda J.J.A., Hernandez R.M., Igartua M. Bioactive and degradable hydrogel based on human platelet-rich plasma fibrin matrix combined with oxidized alginate in a diabetic mice wound healing model // Mater. Sci. Eng. C. 2022. V. 135. № 1. P. 112695. https://doi.org/10.1016/j.msec.2022.112695
- Sivan S.S., Bonstein I., Marmor Y.N., Amit M. Encapsulation of human-bone-marrow-derived mesenchymal stem cells in small alginate beads using one-step emulsification by internal gelation: In vitro, and in vivo evaluation in degenerate intervertebral disc model // Pharmaceutics. 2022. V. 4. № 6. P. 1179. https://doi.org/10.3390/pharmaceutics14061179
- Abouzeid R.E., Khiari R., Salama A., Diab M., Beneventi D., Dufresne A. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing // Int. J. Biol. Macromol. 2020. V. 160. P. 538–547. https://doi.org/10.1016/j.ijbiomac.2020.05.181
- Sardelli L., Tunesi M., Briatico-Vangosa F., Petrini P. 3D-Reactive printing of engineered alginate inks // Soft Matter. 2021. V. 17. № 8. P. 8105–8117. https://doi.org/10.1039/D1SM00604E
- Siwal S.S., Mishra K., Saini A.K., Alsanie W., Kovalcik A., Thakur K. Additive manufacturing of bio-based hydrogel composites: Recent advances // J. Polym. Environ. 2022. V. 30. P. 4501–4516. https://doi.org/10.1007/s10924-022-02516-z
- Varaprasad K., Jayaramudu T., Kanikireddy V., Toro C., Sadiku E.R. Alginate-based composite materials for wound dressing application: A mini review // Carbohy-dr. Polym. 2020. V. 236. P. 116025. https://doi.org/10.1016/j.carbpol.2020.116025
- Pereira R., Carvalho A., Vaz D.C., Gil M.H., Mendes A., Bártolo P. Development of novel alginate based hydrogel films for wound healing applications // Int. J. Biol. Macromol. 2013. V. 52. P. 221–230. https://doi.org/10.1016/j.ijbiomac.2012.09.031
- Soleimanpour M., Mirhaji S.S., Jafari S., Derakhshankhah H., Mamashli F., Nedaei H., Karimi M.R., Motasadizadeh H., Fatahi Y., Ghasemi A., Nezamtaheri M., Mohadese K., Teimouri M., Goliaei B., Delattre C., Saboury A.A. Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing // Sci. Rep. 2022. V. 12. P. 7213. https://doi.org/10.1038/s41598-022-11282-w
- Su Y., Yrastorza J., Matis M., Cusick J., Zhao S., Wang G., Xie J. Biofilms: Formation, research models, potential targets, and methods for prevention and treatment // Adv. Sci. 2022. V. 9. № 29. P. 2203291. https://doi.org/10.1002/advs.202203291
- Balakireva A.V., Kuznetsova N.V., Petushkova A.I., Savvateeva L.V., Zamyatnin A.A. Trends and prospects of plant proteases in therapeutics // Curr. Med. Chem. 2019. V. 26. № 3. P. 465–486. https://doi.org/10.2174/0929867325666171123204403
- Фидоровская Ю.С., Медушева Е.О., Коровина М.А., Кричевский Г.Е., Олтаржевская Н.Д Особенности технологии получения раневых покрытий с протеолитическим и антимикробным действием // Известия вузов. Технология текстильной промышленности. 2021. Т. 395. № 5. С. 137–143. https://doi.org/10.47367/0021-3497_2021_5_137
- Кокшаров С.А., Алеева С.В., Лепилова О.В., Кричевский Г.Е., Фидоровская Ю.С. Свойства гидроколлоидов альгината натрия при сорбционном связывании папаина // Коллоид. журн. 2021. Т. 83. № 6. С. 660–675. https://doi.org/10.31857/S0023291221060070
- Бирштейн T.M. Конформации макромолекул и внутримолекулярные конформационные переходы // Высокомол. соединения. Сер. A. 2019. Т. 61. № 6. С. 542–552.
- Derkach S.R., Voron’ko N.G., Sokolan N.I., Kolotova D.S., Kuchina Y.A. Interactions between gelatin and sodium alginate: UV and FTIR studies // J. Dispers. Sci. Technol. 2020. V. 41. № 5. P. 182617031. https://doi.org/10.1080/01932691.2019.1611437
- Feng L., Cao Y., Xu D., You S., Han F. The ultrasound technology for modifying enzyme activity // Ultrason. Sonochem. 2016. V. 32. P. 145–150. https://doi.org/10.17268/sci.agropecu.2016.02.07
- Boyd G.E., Adamson A.W., Myers L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics // J. Am. Chem. Soc. 1947. V. 69. № 11. P. 2836–2848. https://doi.org/10.1021/ja01203a066
- Крижановская О.О., Синяева Л.А., Карпов С.И., Селеменев В.Ф., Бородина Е.В., Рёсснер Ф. Кинетические модели при описании сорбции жирорастворимых физиологически активных веществ высокоупорядоченными неорганическими кремнийсодержащими материалами // Сорбционные и хроматографические процессы. 2014. Т. 14. № 5. С. 784–794.
- Weber J.W.J., Morris J.C. Kinetics of adsorption on carbon from solution // J. Sanitary Eng. Division. 1963. V. 89. № 2. P. 31–60.
- Lagergren S. About the theory of so-called adsorption of soluble substances // Kung Sven Veten Hand. 1898. V. 24. № 4. P. 1–39.
- Ho Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: Review // Sep. Purif. Methods. 2000. V. 29. № 2. P. 189–232. https://doi.org/10.1081/SPM-100100009
- Javadian H. Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution // J. Ind. Eng. Chem. 2014. V. 20. № 6. P. 4233–4241. https://doi.org/10.1016/j.jiec.2014.01.026
- Turner B., Henley B.J., Sleap S., Sloan, S.W. Kinetic model selection and the Hill model in geochemistry // Int. J. Environ. Sci. Techn. 2015. V. 12. № 8. P. 2545–2558. https://doi.org/10.1007/s13762-014-0662-4
- Hubbe M., Azizian S., Douven S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review // Bioresources. 2019. V. 14. № 3. P. 7582–7686. https://doi.org/10.15376/biores.14.3.7582-7626
- Kornilova N., Koksharov S., Aleeva S., Lepilova O., Bikbulatova A., Nikiforova E. Enterosorbents based on rhubarb biomass with a hybrid polymer-inorganic coating for the immobilization of azaheterocyclic mycotoxins // Coatings. 2023. V. 13. № 4. P. 684. https://doi.org/10.3390/coatings13040684
- Кокшаров С.А., Алеева С.В., Лепилова О.В. Влияние строения пектиновых веществ льняных кормовых добавок на абсорбционное связывание азагетероциклических микотоксинов // Рос. хим. журн. 2021. Т. 65. № 1. С. 12–35. https://doi.org/10.6060/rcj.2021651.2
- Кокшаров С.А., Алеева С.В., Лепилова О.В. Кинетика сорбции теофиллина в гидрогелях пектинов с различающимися структурными свойствами // Журн. физ. химии. 2022. Т. 96. № 4. С. 562–569. https://doi.org/10.31857/S0044453722040161
- Yan Y.D., Clarke J.H.R. In-situ determination of particle size distributions in colloids // Adv. Colloid Interface Sci. 1989. V. 29. P. 277–318. https://doi.org/10.1016/0001-8686(89)80011-9
- Кокшаров С.А. О применении метода динамического светового рассеяния для оценки размера наночастиц в бикомпонентном гидрозоле // Известия вузов. Химия и химическая технология. 2015. Т. 58. № 1. С. 33–36.
- Chatterjee A., Schiewer S. Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns // Chem. Eng. J. 2014. V. 224. P. 105–116. https://doi.org/10.1016/j.cej.2013.12.017
- Kim T., An B. Effect of hydrogen ion presence in adsorbent and solution to enhance phosphate adsorption // Appl. Sci. 2021. V. 11. P. 2777. https://doi.org/10.3390/app11062777
- Сазонова В.Ф., Перлова О.В., Перлова Н.А., Поликарпов А.П. Сорбция соединений урана(VI) на поверхности волокнистого анионита из водных растворов // Коллоид. журн. 2017. Т. 79. № 2. С. 219–226. https://doi.org/10.7868/S0023291217020136
- Маслова М.В., Иваненко В.И., Герасимова Л.Г. Влияние температуры на кинетику сорбции катионов стронция сорбентом на основе фосфата титана // Журн. физ. хим. 2019. Т. 93. № 7. С. 1002–1008. https://doi.org/10.1134/S0044453719060219
- Полянский Н.Г., Горбунов Г.В., Полянская Н.Л. Методы исследования ионитов. М.: Химия, 1976.
- Viegas R.M.C., Campinas M., Costa H., Rosa, M.J. How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes // Adsorption. 2014. V. 20. № 5–6. P. 737–746. https://doi.org/10.1007/s10450-014-9617-9
- Moussout H., Ahlafi H., Aazza M., Maghat H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models // Karbala Int. J. Modern Sci. 2018. V. 4. P. 244–254. https://doi.org/10.1016/j.kijoms.2018.04.001
- Алеева С.В., Лепилова О.В., Кокшаров С.А. Закономерности сорбции паров крезола на высокопористых материалах из биомодифицированной льняной костры // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 1. С. 16–25. https://doi.org/10.31857/S0044185622010028
- Kaszuba M., McKnight D., Connah M.T., McNeil-Watson F.K., Nobbmann U. Measuring sub nanometre sizes using dynamic light scattering // J. Nanopart. Res. 2008. V. 10. P. 823–829. https://doi.org/10.1007/s11051-007-9317-4
- Грег С., Синг К. Адсорбция, удельная поверхность, пористость / Пер. с англ. под ред. К.В. Чмутова. М.: Мир, 1970.
- Morris E.R., Powell D.A., Gidley M.J., Rees D.A. Conformations and interactions of pectins: I. Polymorphism between gel and solid states of calcium polygalacturonate // J. Mol. Biol. 1982. V. 155. № 4. P. 507–516. https://doi.org/10.1016/0022-2836(82)90484-3
- Maslova M., Ivanenko V., Evstropova P., Mudruk N., Gerasimova L. Investigation on purification of saturated LiNO3 solution using titanium phosphate ion exchanger: Kinetics study // Int. J. Mol. Sci. 2022. V. 23. P. 13416. https://doi.org/10.3390/ijms232113416
- Ermolenko A., Shevelev A., Vikulova M., Blagova T., Altukhov S., Gorokhovsky A., Godymchuk A., Burmistrov I., Offor P.O. Wastewater treatment from lead and strontium by potassium polytitanates: Kinetic analysis and adsorption mechanism // Processes. V. 8. № 2. P. 217. https://doi.org/10.3390/pr8020217
- Ma Y., Zhang B., Ma H, Yu M., Li L., Li J. Polyethylenimine nanofibrous adsorbent for highly effective removal of anionic dyes from aqueous solution // Sci. China Mater. 2016. V. 59. № 1. P. 38–50. https://doi.org/10.1007/s40843-016-0117-y
- Campos N.F., Barbosa C.M., Rodrıguez-Dıaz J.M., Duarte M.M. Removal of naphthenic acids using activated charcoal: Kinetic and equilibrium studies // Adsorp. Sci. Technol. 2018. V. 36. № 7–8. P. 1405–1421. https://doi.org/10.1177/0263617418773844
- Петрова Ю.С., Пестов А.В., Алифханова Л.М.К., Неудачина Л.К. Динамика сорбции меди(II) и серебра(I) материалами на основе N-2-сульфоэтилхитозана с различной степенью сшивки // Журн. физ. химии. 2017. Т. 91. № 4. С. 720–724. https://doi.org/10.7868/S0044453717040239
- Koksharov S.A., Aleeva S.V, Lepilova O.V. Description of adsorption interactions of lead ions with functional groups of pectin-containing substances // J. Molecular Liquids. 2019. V. 283. P. 606. https://doi.org/10.1016/j.molliq.2019.03.109
Дополнительные файлы
